Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering.

Identifieur interne : 002D32 ( Main/Exploration ); précédent : 002D31; suivant : 002D33

Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering.

Auteurs : Christine Zawaski [États-Unis] ; Mahita Kadmiel ; Jim Pickens ; Cathleen Ma ; Steven Strauss ; Victor Busov

Source :

RBID : pubmed:21792553

Descripteurs français

English descriptors

Abstract

We modified gibberellin (GA) metabolism and signaling in transgenic poplars using dominant transgenes and studied their effects for 3 years under field conditions. The transgenes that we employed either reduced the bioactive GAs, or attenuated their signaling. The majority of transgenic trees had significant and in many cases dramatic changes in height, crown architecture, foliage morphology, flowering onset, floral structure, and vegetative phenology. Most transgenes elicited various levels of height reduction consistent with the roles of GA in elongation growth. Several other growth traits were proportionally reduced, including branch length, internode distance, and leaf length. In contrast to elongation growth, stem diameter growth was much less affected, suggesting that semi-dwarf trees in dense stands might provide high levels of biomass production and carbon sequestration. The severity of phenotypic effects was strongly correlated with transgene expression among independent transgenic events, but often in a non-linear manner, the form of which varied widely among constructs. The majority of semi-dwarfed, transgenic plants showed delayed bud flush and early bud set, and expression of a native GAI transgene accelerated first time flowering in the field. All of the phenotypic changes observed in multiple years were stable over the 3 years of field study. Our results suggest that transgenic modification of GA action may be useful for producing semi-dwarf trees with modified growth and morphology for horticulture and other uses.

DOI: 10.1007/s00425-011-1485-x
PubMed: 21792553


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering.</title>
<author>
<name sortKey="Zawaski, Christine" sort="Zawaski, Christine" uniqKey="Zawaski C" first="Christine" last="Zawaski">Christine Zawaski</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Forest Research and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Forest Research and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kadmiel, Mahita" sort="Kadmiel, Mahita" uniqKey="Kadmiel M" first="Mahita" last="Kadmiel">Mahita Kadmiel</name>
</author>
<author>
<name sortKey="Pickens, Jim" sort="Pickens, Jim" uniqKey="Pickens J" first="Jim" last="Pickens">Jim Pickens</name>
</author>
<author>
<name sortKey="Ma, Cathleen" sort="Ma, Cathleen" uniqKey="Ma C" first="Cathleen" last="Ma">Cathleen Ma</name>
</author>
<author>
<name sortKey="Strauss, Steven" sort="Strauss, Steven" uniqKey="Strauss S" first="Steven" last="Strauss">Steven Strauss</name>
</author>
<author>
<name sortKey="Busov, Victor" sort="Busov, Victor" uniqKey="Busov V" first="Victor" last="Busov">Victor Busov</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21792553</idno>
<idno type="pmid">21792553</idno>
<idno type="doi">10.1007/s00425-011-1485-x</idno>
<idno type="wicri:Area/Main/Corpus">002D31</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002D31</idno>
<idno type="wicri:Area/Main/Curation">002D31</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002D31</idno>
<idno type="wicri:Area/Main/Exploration">002D31</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering.</title>
<author>
<name sortKey="Zawaski, Christine" sort="Zawaski, Christine" uniqKey="Zawaski C" first="Christine" last="Zawaski">Christine Zawaski</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Forest Research and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Forest Research and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kadmiel, Mahita" sort="Kadmiel, Mahita" uniqKey="Kadmiel M" first="Mahita" last="Kadmiel">Mahita Kadmiel</name>
</author>
<author>
<name sortKey="Pickens, Jim" sort="Pickens, Jim" uniqKey="Pickens J" first="Jim" last="Pickens">Jim Pickens</name>
</author>
<author>
<name sortKey="Ma, Cathleen" sort="Ma, Cathleen" uniqKey="Ma C" first="Cathleen" last="Ma">Cathleen Ma</name>
</author>
<author>
<name sortKey="Strauss, Steven" sort="Strauss, Steven" uniqKey="Strauss S" first="Steven" last="Strauss">Steven Strauss</name>
</author>
<author>
<name sortKey="Busov, Victor" sort="Busov, Victor" uniqKey="Busov V" first="Victor" last="Busov">Victor Busov</name>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="eISSN">1432-2048</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Flowers (anatomy & histology)</term>
<term>Flowers (genetics)</term>
<term>Flowers (growth & development)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (genetics)</term>
<term>Gibberellins (metabolism)</term>
<term>Mixed Function Oxygenases (genetics)</term>
<term>Mixed Function Oxygenases (metabolism)</term>
<term>Phenotype (MeSH)</term>
<term>Plant Leaves (anatomy & histology)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Stems (anatomy & histology)</term>
<term>Plant Stems (genetics)</term>
<term>Plant Stems (growth & development)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (anatomy & histology)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (physiology)</term>
<term>Principal Component Analysis (MeSH)</term>
<term>Protein Structure, Tertiary (genetics)</term>
<term>Protein Structure, Tertiary (physiology)</term>
<term>Regression Analysis (MeSH)</term>
<term>Signal Transduction (physiology)</term>
<term>Transgenes (genetics)</term>
<term>Trees (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de régression (MeSH)</term>
<term>Analyse en composantes principales (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Arbres (MeSH)</term>
<term>Feuilles de plante (anatomie et histologie)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (génétique)</term>
<term>Fleurs (anatomie et histologie)</term>
<term>Fleurs (croissance et développement)</term>
<term>Fleurs (génétique)</term>
<term>Gibbérellines (métabolisme)</term>
<term>Gènes de plante (génétique)</term>
<term>Mixed function oxygenases (génétique)</term>
<term>Mixed function oxygenases (métabolisme)</term>
<term>Phénotype (MeSH)</term>
<term>Populus (anatomie et histologie)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Structure tertiaire des protéines (génétique)</term>
<term>Structure tertiaire des protéines (physiologie)</term>
<term>Tiges de plante (anatomie et histologie)</term>
<term>Tiges de plante (croissance et développement)</term>
<term>Tiges de plante (génétique)</term>
<term>Transduction du signal (physiologie)</term>
<term>Transgènes (génétique)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Mixed Function Oxygenases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Gibberellins</term>
<term>Mixed Function Oxygenases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Fleurs</term>
<term>Populus</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Flowers</term>
<term>Plant Leaves</term>
<term>Plant Stems</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Fleurs</term>
<term>Populus</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Flowers</term>
<term>Genes, Plant</term>
<term>Plant Leaves</term>
<term>Plant Stems</term>
<term>Populus</term>
<term>Protein Structure, Tertiary</term>
<term>Transgenes</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Flowers</term>
<term>Plant Leaves</term>
<term>Plant Stems</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Feuilles de plante</term>
<term>Fleurs</term>
<term>Gènes de plante</term>
<term>Mixed function oxygenases</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Structure tertiaire des protéines</term>
<term>Tiges de plante</term>
<term>Transgènes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Gibbérellines</term>
<term>Mixed function oxygenases</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
<term>Structure tertiaire des protéines</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
<term>Protein Structure, Tertiary</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Phenotype</term>
<term>Plants, Genetically Modified</term>
<term>Principal Component Analysis</term>
<term>Regression Analysis</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de régression</term>
<term>Analyse en composantes principales</term>
<term>Arbres</term>
<term>Phénotype</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We modified gibberellin (GA) metabolism and signaling in transgenic poplars using dominant transgenes and studied their effects for 3 years under field conditions. The transgenes that we employed either reduced the bioactive GAs, or attenuated their signaling. The majority of transgenic trees had significant and in many cases dramatic changes in height, crown architecture, foliage morphology, flowering onset, floral structure, and vegetative phenology. Most transgenes elicited various levels of height reduction consistent with the roles of GA in elongation growth. Several other growth traits were proportionally reduced, including branch length, internode distance, and leaf length. In contrast to elongation growth, stem diameter growth was much less affected, suggesting that semi-dwarf trees in dense stands might provide high levels of biomass production and carbon sequestration. The severity of phenotypic effects was strongly correlated with transgene expression among independent transgenic events, but often in a non-linear manner, the form of which varied widely among constructs. The majority of semi-dwarfed, transgenic plants showed delayed bud flush and early bud set, and expression of a native GAI transgene accelerated first time flowering in the field. All of the phenotypic changes observed in multiple years were stable over the 3 years of field study. Our results suggest that transgenic modification of GA action may be useful for producing semi-dwarf trees with modified growth and morphology for horticulture and other uses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21792553</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2048</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>234</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2011</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering.</ArticleTitle>
<Pagination>
<MedlinePgn>1285-98</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00425-011-1485-x</ELocationID>
<Abstract>
<AbstractText>We modified gibberellin (GA) metabolism and signaling in transgenic poplars using dominant transgenes and studied their effects for 3 years under field conditions. The transgenes that we employed either reduced the bioactive GAs, or attenuated their signaling. The majority of transgenic trees had significant and in many cases dramatic changes in height, crown architecture, foliage morphology, flowering onset, floral structure, and vegetative phenology. Most transgenes elicited various levels of height reduction consistent with the roles of GA in elongation growth. Several other growth traits were proportionally reduced, including branch length, internode distance, and leaf length. In contrast to elongation growth, stem diameter growth was much less affected, suggesting that semi-dwarf trees in dense stands might provide high levels of biomass production and carbon sequestration. The severity of phenotypic effects was strongly correlated with transgene expression among independent transgenic events, but often in a non-linear manner, the form of which varied widely among constructs. The majority of semi-dwarfed, transgenic plants showed delayed bud flush and early bud set, and expression of a native GAI transgene accelerated first time flowering in the field. All of the phenotypic changes observed in multiple years were stable over the 3 years of field study. Our results suggest that transgenic modification of GA action may be useful for producing semi-dwarf trees with modified growth and morphology for horticulture and other uses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zawaski</LastName>
<ForeName>Christine</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>School of Forest Research and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kadmiel</LastName>
<ForeName>Mahita</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pickens</LastName>
<ForeName>Jim</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Cathleen</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Strauss</LastName>
<ForeName>Steven</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Busov</LastName>
<ForeName>Victor</ForeName>
<Initials>V</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>07</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005875">Gibberellins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D006899">Mixed Function Oxygenases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.11.13</RegistryNumber>
<NameOfSubstance UI="C121463">gibberellin 2-dioxygenase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035264" MajorTopicYN="N">Flowers</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005875" MajorTopicYN="N">Gibberellins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006899" MajorTopicYN="N">Mixed Function Oxygenases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025341" MajorTopicYN="N">Principal Component Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012044" MajorTopicYN="N">Regression Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019076" MajorTopicYN="N">Transgenes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>05</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>07</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21792553</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-011-1485-x</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2002 Apr 25;416(6883):847-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11976683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jun;120(2):623-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10364415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2006 Jul;25(7):660-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16496153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(7):1979-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19264752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Oct;20(10):2603-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Dec;222(6):957-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16270204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Apr;18(1):111-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10341448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cell Mol Biol. 2008;268:191-221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18703407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Feb;12(1):57-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18930434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 May 1;62(4):674-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20202169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jan;23(1):130-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21282527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Jul;224(2):288-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16404575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Apr;214(6):920-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11941469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Aug;13(8):1791-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11487693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Jul 15;400(6741):256-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10421366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S61-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 May;21(5):1328-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19470587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Mar;22(3):623-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20354195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):9043-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12077303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 Mar;27(3):463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17999064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jan 27;311(5760):484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16439654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 1999 Sep;17(9):361-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10461182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Growth Regul. 2001 Dec;20(4):319-331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11986758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Feb;29(2):299-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19203955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2003 Dec;12(6):707-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2003 May;23(7):489-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12670803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Nov;19(11):3669-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Sep;20(9):2420-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18805991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 May;73(1-2):37-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20213333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 May;135(1):254-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Jan;15(1):151-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Genet Syst. 2005 Oct;80(5):351-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16394586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jan;14(1):87-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11826301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 May;138(1):243-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15821147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Dec 1;11(23):3194-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9389651</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Busov, Victor" sort="Busov, Victor" uniqKey="Busov V" first="Victor" last="Busov">Victor Busov</name>
<name sortKey="Kadmiel, Mahita" sort="Kadmiel, Mahita" uniqKey="Kadmiel M" first="Mahita" last="Kadmiel">Mahita Kadmiel</name>
<name sortKey="Ma, Cathleen" sort="Ma, Cathleen" uniqKey="Ma C" first="Cathleen" last="Ma">Cathleen Ma</name>
<name sortKey="Pickens, Jim" sort="Pickens, Jim" uniqKey="Pickens J" first="Jim" last="Pickens">Jim Pickens</name>
<name sortKey="Strauss, Steven" sort="Strauss, Steven" uniqKey="Strauss S" first="Steven" last="Strauss">Steven Strauss</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Zawaski, Christine" sort="Zawaski, Christine" uniqKey="Zawaski C" first="Christine" last="Zawaski">Christine Zawaski</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D32 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002D32 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21792553
   |texte=   Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21792553" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020